Archimedes kindasorta discovered calculus:

Archimedes wrote his manuscript on a papyrus scroll 2,200 years ago. At an unknown later time, someone copied the text from papyrus to animal-skin parchment. Then, 700 years ago, a monk needed parchment for a new prayer book. He pulled the copy of Archimedes' book off the shelf, cut the pages in half, rotated them 90 degrees, and scraped the surface to remove the ink, creating a palimpsest—fresh writing material made by clearing away older text. Then he wrote his prayers on the nearly-clean pages.

What they're finding as they try to recover the underlying text is hard to summarize, but it sounds calculus-like,

Archimedes developed rigorous methods of dealing with infinity—still used today—in which he followed Aristotle's injunction. For example, Archimedes proved that the area of a section of a parabola is four-thirds the area of the triangle inside it (shown in red in the diagram below). To do so, he built a straight-lined figure that's an approximation of the curvy one. Then he showed that he could make the approximation as close as anyone could ever demand to both the section of the parabola and to four-thirds the area of the triangle.

Critically, Archimedes never claimed that by adding triangles forever, you could make the straight-line construction exactly equal to the section of the parabola. That would require an actual infinity of triangles. Instead, he just said that you can make the approximation as good as you like, so he was sticking with potential infinity.

Modern historians and mathematicians have always believed whenever Archimedes dealt with infinities, he kept strictly to the potential kind. But Netz, who transcribed the newly found text, says that the recent discoveries show that Archimedes indeed used the notion of actual infinity.

There's more…