Full entry |
PDF
(0.7 MB)
Feedback

monotone minimizer in an optimization problem; Markov control process; total discounted cost; average cost; monotone optimal policy

References:

[1] Ash R. B.: **Real Variables with Basic Metric Space Topology**. IEEE Press, New York 1993 MR 1193687 | Zbl 0920.26002

[2] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: **Conditions for the uniqueness of optimal policies of discounted Markov decision processes**. Math. Methods Oper. Res. 60 (2004), 415–436 MR 2106092 | Zbl 1104.90053

[3] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: **Pointwise approximations of discounted Markov decision processes to optimal policies**. Internat. J. Pure Appl. Math. 28 (2006), 265–281 MR 2228009 | Zbl 1131.90068

[4] Fu M. C., Marcus S. I., Wang, I-J: **Monotone optimal policies for a transient queueing staffing problem**. Oper. Res. 48 (2000), 327–331

[5] Gallish E.: **On monotone optimal policies in a queueing model of M/G/1 type with controllable service time distribution**. Adv. in Appl. Probab. 11 (1979), 870–887 MR 0544200

[6] Hernández-Lerma O., Lasserre J. B.: **Discrete-Time Markov Control Processes**. Springer-Verlag, New York 1996 MR 1363487 | Zbl 0928.93002

[7] Heyman D. P., Sobel M. J.: **Stochastic Models in Operations Research, Vol**. II. Stochastic Optimization. McGraw-Hill, New York 1984 Zbl 1072.90001

[8] Hinderer K., Stieglitz M.: **Increasing and Lipschitz continuous minimizers in one-dimensional linear-convex systems without constraints: The continuous and the discrete case**. Math. Methods Oper. Res. 44 (1996), 189–204 MR 1409065 | Zbl 0860.90126

[9] Kalin D.: **A note on ‘monotone optimal policies for Markov decision processes’**. Math. Programming 15 (1978), 220–222 MR 0509965 | Zbl 0387.90106

[10] Mendelssohn R., Sobel M.: **Capital accumulation and the optimization of renewable resource models**. J. Econom. Theory 23 (1980), 243–260 Zbl 0472.90015

[11] Pittenger A. O.: **Monotonicity in a Markov decision process**. Math. Oper. Res. 13 (1988), 65–73 MR 0931486 | Zbl 0646.90088

[12] Porteus E. L.: **Foundations of Stochastic Inventory Theory**. Stanford University Press, Stanford, Calif. 2002

[13] Puterman M. L.: **Markov Decision Processes: Discrete Stochastic Dynamic Programming**. Wiley, New York 1994 MR 1270015 | Zbl 1184.90170

[14] Rieder U.: **Measurable selection theorems for optimization problems**. Manuscripta Math. 24 (1978), 115–131 MR 0493590 | Zbl 0385.28005

[15] Ross S. M.: **Introduction to Stochastic Dynamic Programming**. Academic Press, San Diego 1983 MR 0749232 | Zbl 0567.90065

[16] Serfozo R. F.: **Monotone optimal policies for Markov decision processes**. Math. Programming Stud. 6 (1976), 202–215 MR 0459646 | Zbl 0368.60080

[17] Stidham, Sh., Weber R. R.: **Monotonic and insensitive optimal policies for control of queues with undiscounted costs**. Oper. Res. 37 (1989), 611–625 MR 1006813 | Zbl 0674.90029

[18] Stromberg K. R.: **An Introduction to Classical Real Analysis**. Wadsworth International Group, Belmont 1981 MR 0604364 | Zbl 0454.26001

[19] Sundaram R. K.: **A First Course in Optimization Theory**. Cambridge University Press, Cambridge 1996 MR 1402910 | Zbl 0885.90106

[20] Topkis D. M.: **Minimizing a submodular function on a lattice**. Oper. Res. 26 (1978), 305–321 MR 0468177 | Zbl 0379.90089

[21] Topkis D. M.: **Supermodularity and Complementarity**. Princeton University Press, Princeton, N. J. 1988 MR 1614637