Limited Form of Cold Fusion Replicated in Lab

Goodbye “cold fusion” and hello “bubble fusion”.

Physical Review E has announced the publication of an article by a team of researchers from Rensselaer Polytechnic Institute (RPI), Purdue University, Oak Ridge National Laboratory (ORNL), and the Russian Academy of Science (RAS) stating that they have replicated and extended previous experimental results that indicated the occurrence of nuclear fusion using a novel approach for plasma confinement.

This approach, called bubble fusion, and the new experimental results are being published in an extensively peer-reviewed article titled “Additional Evidence of Nuclear Emissions During Acoustic Cavitation,” which is scheduled to be posted on Physical Review E’s Web site and published in its journal this month.

The research team used a standing ultrasonic wave to help form and then implode the cavitation bubbles of deuterated acetone vapor. The oscillating sound waves caused the bubbles to expand and then violently collapse, creating strong compression shock waves around and inside the bubbles. Moving at about the speed of sound, the internal shock waves impacted at the center of the bubbles causing very high compression and accompanying temperatures of about 100 million Kelvin.

These new data were taken with an upgraded instrumentation system that allowed data acquisition over a much longer time than was possible in the team’s previous bubble fusion experiments. According to the new data, the observed neutron emission was several orders of magnitude greater than background and had extremely high statistical accuracy. Tritium, which also is produced during the fusion reactions, was measured and the amount produced was found to be consistent with the observed neutron production rate.

Earlier test data, which were reported in Science (Vol. 295, March 2002), indicated that nuclear fusion had occurred, but these data were questioned because they were taken with less precise instrumentation.

“These extensive new experiments have replicated and extended our earlier results and hopefully answer all of the previous questions surrounding our discovery,” said Richard T. Lahey Jr., the Edward E. Hood Professor of Engineering at Rensselaer and the director of the analytical part of the joint research project.

I think this is still a long way from powering my laptop, though.

This entry was posted in Science/Medicine. Bookmark the permalink.